If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24h^2-8h-42=0
a = 24; b = -8; c = -42;
Δ = b2-4ac
Δ = -82-4·24·(-42)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-64}{2*24}=\frac{-56}{48} =-1+1/6 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+64}{2*24}=\frac{72}{48} =1+1/2 $
| c-14=3 | | Y+5=2y+1 | | 3z/10-7=0 | | 3x+9=7x+7 | | -18x=2x^2+40 | | 5=x/3-16 | | 7x^2-50x-432=0 | | x+1/4=7/8 | | 7-2n=-11+7n-6n | | x^2-50x-432=0 | | -(2x)^+1=-3 | | 72=3/4c | | 1/2x=10+3/2x=x+1 | | X2+13x-40=8 | | 10k=10k | | 17^x=5 | | 30=-3x–3 | | 31 +a=45 | | 9+2x-3+6x=5+5x+13 | | 24=-4a–16 | | h/4+h/3=2 | | 3x/10-4=x/2-6 | | 2(2x-1=5(2x-4) | | 7x+12+5x=180 | | -3(p+4)=15 | | 1/3x-5+170=x | | 6x+4x=-50 | | 98=2x-4(1-8x) | | 4(2x-3)^3-(2x-3)(4x^2-6x+9)=18x-3 | | 4(3x-1)=3+6x-11 | | 5h=624 | | X^2-10000x-60000=0 |